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The method of constructing the influence function for a multilayer isotropie medium (Green's matrix-symbol) described in [1] 
is extended to the case when the layers have elec~oelastie or anisotropie properties. A solution is obtained for piezoelectric crystals 
of class 6ram of the hexagonal system (polarized along the z axis of the piezoelectric eeramies). The proposed approach is also 
applied to other problems of electroelastieity. When the piezoelectric and dielectric constants are equal to zero, Green's matrix- 
symbol is obtained for a transversely isotropic laminated medium. The dynamic contact problem is investigated and a numerical 
analysis of the effect of the anisotropie properties of the layers on the behaviour of a massive punch in the case of unsteady 
loading is carried out. 

1. H A R M O N I C  O S C I L L A T I O N S  OF A N  E L E C T R O E L A S T I C  L A Y E R  

Suppose  an electroelast ic  layer  occupies  the  region I z [ ~< h, ---0 < x, y < **. We will consider  as the 
eleetroelast ie  mater ia l  p iezoelec t r ic  crystals polar ized in the direct ion of  the  z axis). The  mechanica l  
loads  te -/~, re -/e~ and  the  electr ic-charge distribution density on the surface ( the no rma l  c o m p o n e n t s  
of  the electric induction or  electric displacement)  die/~t and d ~  ~,  respectively, are specified on the uppe r  
and  lower botmdariies o f  the  layer. 

H a r m o n i c  electroelast ie  oscillations of  the layer a re  descr ibed by the  following equat ions  in the 
quasistat ie approxhna t ion  [2] (in dimensionless  ampl i tudes  of  the  pa rame te r s ,  the factor  e i°~ c o m m o n  
for  all the characte:ristics will be  omi t t ed  everywhere)  

Here 

5tO+Au+fl2u =0, 520+A~+f22~ = 0 

5300 + AO(w+eI~II)+L'~2w = 0 

530" + A ° (el w -  e1¥) = 0 

(1.1) 

e=cx2f+53(c%w+eoW), A=cqA° +5~ 

e 0 - -¢ t3 f+53(8ow+e3~) ,  A 0 =512 + 5  2 

O*=eof+53(e3w-~3~/), f=SlU+52q0,  0~2=~0--Ot I 

CZo a:l~o ao=Clt, [~o -q2, ¥o =cl3 6o =c33, 
C44 -- C"-~ C44 ' C44 {XI'2 = 2 

c~_~l cq=l+'to, el =eL#, e2 =c31"-2t, e 3 =  " 
C44 C44 C44 

Cornel+e2 ' i~1=i~11/2, E3=g33/2,  ~.,~2 = P 0}2a2 
c44 c44 c44 

The symbols 5i (~[ = 1, 2, 3) denote differentiation with respect tox/y,y/a and z/a, respectively, and 
x, y, z is a Cartesian system of coordinates. The components of the vector function w(x, y, z) = {u, a), 
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626 I.I .  Vorovich et al. 

w, ¥} are the horizontal and vertical displacements of points of the medium u, ~o, w and the electric- 
field potential ¥; co is the angular frequency of  the oscillations, p is the density of  the material, a is a 
characteristic linear dimension (for example, the half-width of the electrode), l is a normalizing factor 
which has the dimensions of electric field E, and cij, ci~, eij, e~ 7 are the dimensional elastic, piezoelectric 
and dielectric constants, respectively. 

We will split the problem into two: symmetric and skew-symmetric. 
The boundary conditions of the symmetric problem have the form 

z=+h: O3u+Ol(w+elw)=+(h-rl)12 (1.2) 

O3D+O2(w+eiV)=+(t2 - r 2 ) / 2  

) 'of  + ~3(60 w + e3~) = (t3 + r~ ) / 2 

e2f +a3(e3w-e3¥)=(dl +d2) /2  

where t = {tl, t2, t3, dl),  r = {rl, re, r3, d2}, tl, 2; rl, 2 are the horizontal components, and t3 and r3 are 
the vertical components of the vectors of the mechanical load, and dl, 2 are the normal components of 
the vectors of  the electric induction, which acts on the upper and lower faces of  the layer, respectively. 

The boundary conditions of  the skew-symmetric problem differ from (1.2) in the fact that - ( h ,  2 - 
rl, 2) is replaced by tl, 2 + rl, 2, and t3 + r3 by -( t3  - r3) while dl+d2 is replaced by - ( d l -  d2). 

We will seek the solution of system (1.I) in the form 

U=t)lfl+O2f2, 1)=O2j~-Olf2, W=W, ¥----¥ (1.3) 

After substituting (1.3) into (1.1) we obtain after reduction in Fourier transforms with respect to x and y 

(-~20t0 + ~  + ['~2)A - ~.2~3 (~3W+ eo~F) = 0  

ot3O3A +O2(80W +e3W)-~.2(W +elW)+~2W =O 

eo~3A + 22 (e 3 W - E3tl J) - ~2 (e I W - e lW) = 0 

(-~.2a14-~2-t-~"~2)B= 0 (~2=0~2-1-[~2 ' A=-~.2fl, B=-~.2f2) 

where ~ and 13 are the parameters of the Fourier transform. 
From the last equation of (1.4) we obtain 

k 2 _¢qk2 + ~ 2  =0,  k 4 =+(¢qZ 2 _f~2))~ =+04  

(1.4) 

We will set up the characteristic equation of system (1.4) in the form 

[tl k6 +1~2 k4 +It3 k2 +~4 = 0  

Pl =-e35o -e2, tx2 =~2(~tl-e3)+Z'2ct 

~3 "~ --e3 ~'~4 -I- ~2~-~2 (E 3 + (gOe 3 "t- ~5 "1- ~6 ) -I- ~,4C 2 

bt4 ---- ~"~4~'2EI --~'~2~'4(~7 + ElOt0)+ ~'61~0~7 (1.5) 

Ct = ¢3 + e o Z I  -¢t3X2 +~5 -Oto~t~ 

c2 = Ot3Z4 - e02C3 - e 2  - 0toi~3 - OtoZ5 - g l  

Zi =eoSo-a3e3, Z2 =eoe3 +ot3C3 

~3 =Co-ot3el, ~ 4  =eoel +Ot3Ei 

Z5 =EISO+2ele3, Z6 =El +eo 2, Z7 =El +el 2 

As an analysis shows [2], this bicubic equation in the parameter k for known piezoelectric ceramics 
has two real roots kl = -+01 and four complex-conjugate roots -+(k2 - ik3) = 02, 3. 

For the symmetric problem the solution can be represented in the form 
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3 3 3 
A = ~, piWichl~iZ, W =  ~, Wishoiz, ~ = ~ siW/shffiz (1.6) 

i=l i=l i=l 

B = bch~4z 

p~ = ~?oAaa +eos~)l (o~ -cto~? +t'Z 2 ) 

(1.7) 

while for the skew-symmetric problem it can be represented in a similar form with the replacement 
sh( • ) <-> oh( • ). 

The boundary conditions of the symmetric problem (1.2) can be converted to the form 

z=±h:  a.~A-~,2(w+el~)=~:~,2Q~ 12 

yo A + c3~ 0SoW + e3¥ ) = Q.~ / 2 (1.8) 

e2A+O3(e3w-~3~)=Q ~ 12 

For the skew-symmetric problem the quantities ~Q~, YQ~ are replaced by --Qi, -Q~, while Q~, Q~ 
are replaced by ±Qi~, +Q4, respectively. 

Here 

Q~ = i2c 2 [(T I :I: R t )ct + (T2 :I: R 2 )1}1 

Q~ = i k  -2 [ (T  I :i: R t )~ + ( T  2 :i: R 2)ctl 

Q~ = ~ + R,, Q~ = o, ± o2 

where T/, R i and D i are the Fourier transforms of ti, ri and di, respectively. 
From the last boundary condition of (1.8) we find b, and hence 

B = _k2 cho4z(204 sh ¢~4h)-i Q~ 

The remaining boundary conditions of (1.8) give a system for determining the unknown coefficients 
Wi 

LW=F,  F=J~{-~)Q~, Q.~, Q~} 

The elements of the matrix L = I! L/j II (i, j = 1, 2, 3) are as follows: 

lq.i = ll j sh  c~ ih, Llj = lq ch o ih, i=2,3 

/Ij =-L2( I +els / )+o/Pj  

12i = ¢1 i(8o + e35 j )+ Y0Pj (1.9) 

13~ =~j(e3 -e:~)+e2pj 

Taking into accotmt the fact that ~2U = i ~  + i ~  and ~.2V = i ~  + i ~ ,  the solution of the symmetric 
problem (1.6) can be written in the form 

W(z)=A~(z)Q ÷, Q+={Q~+, Q~, Q~', Q.~}, W = l U ,  V ,W,~}  

We can similarly construct a solution of the skew-symmetric problem 

W(z) = A~(z)Q r" 

The matrices A ~(z)Q- have the following structure 
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~-io~ 2MI ~ -i~L 2N -+ iff.M~ i(xMf~ 
A~(Z)=~-i~Z2M~ +iO~2N ± i~M~ i~M~[ 

i-~tc, ~ 0 K~ K~ II 
II 

1 3 I 3 

K~=2A + = 2A j=; ,~= mi~si(z), R+ =~-i'7,+ ~.sjm#s)(z), 
l 3 

M: = ~ X , : , : / ( z ) ,  
3 

N + =ch(I4z(2o4~,2sh¢i4h) -l, A + =~lumjitj 

m11=i22133-132123, m12=131123-121133, ml3=121132-122131 
m21 =/I 313213 - ll2/3312 , m22 = Ii 1/3311 - [1313113 

m23 --/12/31f2 - / I  1/3211 , /1131 = ll2123t2 -113122t3 

m32 = 113121t 3 - l  11123tl, m33 = l 11122tl -112121t2 

sh(rjz cj(z)= ch¢Ijz 
sj(z)= ch(~jh' chc~jh' ti =th(Ijh 

A + / (+ R + hi'+ The elements A-, IC:, R7,, Mrs, N-  are obtained by making the replacement sh ~ ch and _ , . . i , . .  i,-.-i, 
N +, respectively. 

The general solution of  the problem is 

W(z) = A~ (z)Q+ + A~, (z)Q- 

We will introduce two matrices of special form 

I 
't'iot~ -2 ---i~, -2 0 0 

C + = + i~ ,  -2 :Fi(x~, -2 0 0 
0 0 ! 0 
0 0 0 1 

Then Q* = C+T _ C-R, and the solution for the layer can be written as 

W ( z ) =  B + ( z ) T + B _ ( z ) R  (1.10) 

n,(z)=(A~(z)+A~(z))C* = 

I (X2m~+~2n + 

= _iotkl~ 
-iarl ± 

vc~(nh*-n ±) +iuzn~ ±ium~ 
~2m~ +a2n + +ipm~ :l:i~m~ 
-**,* ±kI ±k~ I 
-i~rl + +r~ +r~ 

mi*=M~ +M +, n±=N-+N +. t,~ = x [  ± xT, r/- = R; + R: 

(1.11) 

2. C O N S T R U C T I O N  OF G R E E N ' S  M A T R I X - S Y M B O L  F O R  
A M U L T I L A Y E R  M E D I U M  

Suppose the medium is a packet of N rigidly connected layers of thickness H = 2(hl + . . .  + hN) 
with rigidly clamped lower surface, and suppose the medium occupies the region - H  ~< z ~< O, --~ < x, 
y < **. We will use the solution (1.10), (1.11) obtained above for the layer. We introduce a local system 
of coordinates for each layer 

zk =z+2(hl+...+hk_t)+hk, k=l,2 ..... N 

We make a formal separation of the layers. Then the displacement of points of the kth layer, U, V 
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and W, and the electric potential W will be given in dimensional parameters by the expression 

W~(z,)=[B+(z~)T,_~ +B_(z~)T~]alc~4, k=l,2 ..... N 

W~ = lU, V, W,U/ / l}, Ta = IT~,Tz,T.a,Ol} 

where Tk is a vector whose components are the forces and electric induction characterizing the interaction 
between the layers, and To is a vector specified on the surface of the medium. 

Note that to calculate the elements of the matrix B_+(zk) in (1.10) and (1.11) one must use the elastic, 
piezoelectric and dielectric moduli of the corresponding layer. 

We will write the matching conditions between the layers. 

W~(-h,)=W~+~(h~+~), k = L 2  ..... N - !  

and the condition at the lower surface of the packet of layers 

(2.1) 

W,v (-h~,) = 0 (2.2) 

From (2.1) we have the recurrence relation 

From (2.2) we determine 

B .  ( -hk  )Tk_~ + [B_ ( - h ~ ) -  gk B+ (hk+~)IT, = 

k - k+ l  = gkB_ (htc+l)T~+|, gk = c44 ~ c44 (2.3) 

T N = -B= I ( -h#)B+ ( -h  N)T~q (2.4) 

Using (2.3) and (2.4) we can express Tk in terms of  the surface load T o 

Tk=(-l)kl-ll=kFflB+(-h~)To, k= l , 2  ..... N 

Ft¢ = B_(-hN), F~=B_(-hk)-gkB+(h~+l)+ 

+gkB_(hk+l)F~l+iB+(-hk+l), k= 1,2 ..... N-I 

As a result, the displacements of the points of the multilayer medium and the electric potential will 
be determined in dimensionless form by the expression 

W(z) = K(ct,l~,z,m)To (2.5) 

K(a,13,z,m) = ( - I )  k -~ (B+(zk) -B_(zk )~qL( -hk) )x  

x j -I o (2 .6)  l'Ii--,-iF; B+(-hi ) /gk,  go k I =c44/c44, k = l , 2  ..... N 

It has been established that as ~, ~ oo, the asymptotic behaviour of the matrix K on tlae surface of 
the medium when z = 0 is identical with the similar behaviour of K for the layer. We have K(cx, 6, 0, 
co) - B + ( h l )  and 

m~" ~1~,1-3 MOI , m~.3 - ~-2 MO. rl+ _ ~-2 ROl , rL,+ ~l~.l-I R~.3o 

k, + - X- K °, k +.3 -IXr '  : 3 ,  "* -IXr 3 

l 3 i 3 i 3 

I~ = X:i~ -Z3 ~j(cq +eobj) , ,  a j =  , , a ° = d e t L  ° 
X4 -g2~ q~ -cx0 

~ are the cofactors of the elements of the matrix L ° = II ~j II (i,j = I, 2, 3), where 
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~lj = "qjaj -- i -- elb i, 

~3i = e3 - ~'3bi + e2aj 
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~2j = qj  (80 + e3bj )+'Yoaj 

and r h are the roots of the cubic equation 

gjk 3 + ct k 2 + c2 k + OtoX 7 = 0 

The solution for a multilayer medium rigidly clamped to an elastic half-space is obtained by letting 
the thickness of the lower layer tend to infinity. By changing the system of coordinates to the form 
z* = zt¢ -ht¢ in the lower layer and passing to the limit we obtain the matrix 

FN=0,  FN_I =B_( -hN_I ) -gN_IB+ (O) 

F k = B _ ( - h ~ ) - g , B + ( h k +  t )+gkB_(hk+l )F~-+liB+ (-hk+;), k = 1,2 ..... N - 2  

k N - I  

z=zk-2i~__hi+h k, k = l , 2  ..... N - I ;  z = z * - 2 ~ . h i ,  k = N  
i = 1  

The matrix B_**(z*) -- 0, BT(z*) = 2A~(z*)C + has the elements 

k~ I ~ ~¢ _ I ~ 
= ~ a  j=l ~" rail exp(O) Z), ri + - "-~'j~=ls.imq exp(ffj z) 

k exp(O~Z) 
/117 | N = - ~ - - ~ p j m O e x p ( O  j Z), n + = ,= O~X2 A" = detL" 

where mij are the cofactors of the elements of the matrix L** = II/011 (i, j = 1, 2, 3), lij, Pj, sj, given 
by (1 9) and (1 7), and o~are the roots of the characteristic equation (1 5) for the half-space. • . • j 

In pameular, for the half-space we have the simple formula 

W(z) = B7 (z)To 

For a layer rigidly clamped to the half-space we obtain the displacement in the layer 

W(z) = (B+(z + h i ) -  B_(z +h I )Fl'iB+ (-hi) t  o 

in the half-space 

W(z)  = - B ~  (z + 2h I )Fi-IB+ ( - h  I )t o / gO, E = B ( - h  I ) - giB+ (0) 

Applying an inverse Fourier transformation to (2.5) we obtain the integral representation of the 
solution for a multilayer medium 

w(x, y, z) = ~ !  I W(z)e-i(~'+lb')dm'tf 1 (2.7) 

3. THE MIXED D Y N A M I C  P R O B L E M  

Suppose we are given mixed boundary conditions on the surface of the medium z = 0. In the region 
S we are given the displacements and the electric potential 

w(x,y,O, to)-- u°(x ,y , to) ,  (x ,y )  e S 

Outside the region S the stresses are zero and there is no normal component of the electric induction 

t ° = O ,  ( x , y ) ~ S  

Then, from (2.7) we obtain a system of fourth-order integral equations 
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fl k(x- ~,y- ~,m)t° (~,~,m)a~ = u° (x,y,o3) (3.1) 

k ( x, y , oD = 4-~x J, J K ( ot, ~, O, o~ )e-i~"" +llVld ~ 

in the unknown vectors t°{tl, t2, t3, d}. The contours of integration ol and o2 are chosen in accordance 
with the principle cff limiting absorption [3]. 

Problems of this kind on the excitation and oscillations by an electrode in an electroelastie layer with 
a rigidly clamped ]lower surface were considered in [4, 5]. Here a single electrode, as the simplest 
electroelastic wave transducer was modelled by a strip punch. Formulae were obtained which enable 
the contact pressures and the electric induction to be found over the whole region of  contact of the 
electrode with the medium, including the boundary, and also the elastic and electric characteristics 
outside this region. The relations obtained remain true for an eleetroelastie multilayer medium; only 
the form of the integrand matrix function of the kernel of the system of integral equations which 
participate in the s,31utions constructed is changed. In this case the matrix function K is given by (2.6). 

4. C O N S T R U C T I O N  OF G R E E N ' S  M A T R I X  F U N C T I O N  F O R  
A T R A N S V E R S E L Y  I S O T R O P I C  L A M I N A T E D  M E D I U M  

The method of ,constructing the matrix K considered in Section 2 can be extended to multilayer 
anisotropic media. As an example we will consider a transversely isotropie medium, the equations of 
which can be obtained by setting the piezoelectric and dielectric constants equal to zero in (1.1) and 
(1.2). In this case the three-dimensional load vector t°{tl, t2, t3} is specified on the surface of the medium 
and the displacements of the points of the laminated medium w{u, x~, w} are given by (2.5}--(2.7). The 
matrix K is a 3 × 3 matrix and is obtained by deleting the fourth row and column from (1.11). After 
simplification the governing functions have the form 

M~ = 12cl (z)-llc2(z)2~2A+ , M~= bltlc2(z)-bzt2c + (z) 

N + _ c h ( I 4 z  . 0 2  = O t l ~ , 2 - [ ~  2 
- 2~?.04 sho4 h (4.1) 

g~ = 12alsl (z)-t~a2s2(z)2A ÷ , K~ = blaltls~(z)-b~a't2st(z)2A + 

A+ = biter! _ b211t2" ai = oia.a(k2 _ ~2 _ 500/2)-I 

ii=¥o+5oaiO i, bimoi-~.2ai, i=1,2 
where oi are the roots of the biquadratic equation 

5ok4-[~.2(l+5oGto-Ot~)-fJ2(So +i)]k2 +(~. 2-£'~2)(OtO~.2-[~:P)=O k,a =+Ota (4.2) 

In the special ca:~e of an isotropic medium we have 

Oto=8o=X+211=2 I - v  =) "=2 v 
I.t 1--'2~v' I~o = ¥o I.t t - 2 v  

X+l.t ! 
Oil  = l ,  f t .2 = Or3 = I.t 1-2v 

where X, I~ are the Lam6 constants and v is Poisson's ratio. 

5. T H E  U N S T E A D Y  C O N T A C T  P R O B L E M  

We will consider the dynamic contact problem of the interaction between a punch of mass m with 
a transversely isotropic laminated medium occupying the region -0- ~< x, y ~< oo, - H  ~< z ~< 0. We 
will assume that the punch has a fiat base S and that the centre of mass of the punch coincides with 
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the origin of coordinates. A load which varies with time t in a specified way acts on the punch• The 
load, reduced to the centre of mass, is split into a force component P(t) = {P1, P2,/3} and a moment 
M(t) = {Mb M2, M3}. The sys:em is at rest at the initial instant of time. The displacements of the 
points of the punch u°(t) = {u °, u °, u °} are defined in the form u ° = u + ~0 x r or 

where ub u2 and u3 are the horizontal and vertical components of the displacement of the centre of 
mass of the punch and ~O is the vector of the angles of rotation about the centre of mass of the punch. 

The equations of motion of the punch in Laplace transforms take the form 

3 6 k 

3 6 
J,p',p, :-M, + + z i:  ,2,3 

(5.1) 

System (5.1) contains six unknown functions ui, tPi (i = 1, 2, 3) which also define the motion of the 
punch of mass m; Ji are the moments of inertia about the x,y and z axes. The corresponding forces and 
moments which occur in the region of contact between the body and the medium will be defined by 
the formulae 

Rf = S~qJydS, R~ =-S~q~xdSs 

R~=~S(q~x-q~y)dS, Qit=HqfdS, k=1.2,3 
S $ 

The vector functions qk {q~, q~, qk} (k = 1, 2 . . . .  ,6)  are the solutions of the system of integral 
equations (3.1) for the right-hand side, when only one of the components ul, u2, u3, tpl, 92, 92, is non- 
zero, in this case having unit value. In the unsteady problem we must replace the oscillation frequency 
o~ by ip. 

For a strip-shaped punch of width 2a, Eqs (5.1) simplify and the displacements of the punch in Laplace 
transforms will be given by the expressions 

u, =[PI(Jp 2 + R'; ) - MQi~ ]A-o ' ' u2 = P2 t n,p 2 + Q~ )-, 

= [ M(mp 2 + Q~ ) - Pf Qi ~ IA o, (5.2) 

Ao = (raP 2 + O~ XJp 2 + R 3)-  (Qi ~)2 

R'~= Iq~(x) xdx. Qi k=  Iqik(x)dx, k=1,2,3; i :1 ,2  

wherep is the Laplace transform parameter, qk {q~, qk2} are the solutions of the corresponding dynamic 
contact problems 

 q'=ll l  q =fl°l  q'=ll°l/ 
and R3(p), Q~(p) are constructed by the fictional absorption method in analytic form, which simplifies 
the inverse Laplace transformation of (5.2) [1, 6]. Here the numerical Laplace inversion is carried out 
using Filon's method which, in the problems considered, enables high calculation accuracy to be obtained. 

Problems of the action of an unsteady load on a strip-shaped punch in contact with isotropic multilayer 
bases were investigated in detail in [1, 6]. The effect of the anisotropic properties of the layers on the 
displacement of the punch and the nature of the unsteady process in the medium can be investigated 

• ~ ÷ 4- 
using the solutions constructed in [1, 6]. The governing functions M i, N - , / ~ ,  A- for the matrix K must 
be taken in the form (4.1), and one must take into account the different behaviour of the matrices K 
at infinity for isotropic and anisotropic media. 
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Figure 1 shows the vertical displacements of a punch in contact without friction with a transversely isotropic 
layer of thickness H =: 0.5, rigidly clamped to an undeformable base. A vertical load P ( t )  ffi H ( t  - 0.3) acts on the 
punch. Curve 1 illustrates the isotropic layer with parameters ob ffi 50 ffi 3.5, To ffi 1.5, which corresponds to v = 
0.3. Curves 2 and 3 correspond to a transversely isotropic medium with 50 ffi 2.0 and 5.0 (ob = 3.5, To = 1.5). It 
was established that a change in the parameters ob and Y0 has no effect on the amplitude and period of the oscillations 
of the punch and is due to the form of the functionals (5.3), defined when ~ = 0 taking expressions (4.1) and (4.2), 
which participate in the solution, into account. 

Figure 2 illustrates the displacements of a punch which interacts with a two-layer medium. The upper layer 
is an isotropic medium of thickness 2hl = 0.4 and the lower layer is a transversely isotropic medium of thickness 
2h2 ffi 0.4. In this case the anisotropy in the lower layer is introduced by changing the parameter 5O = gob. 
A vertical load P(t) = H ( t  - 0.1) acts on the punch. Curve 1 illustrates the problem for an isotropic layer of 
thickness H = 2hl + 2he = 0.8 (ob ffi 8o ffi 3.5, 7o = 1.5). Curves 2 and 3 correspond to e = 0.5 and 1.5 in the 
lower layer. The CUl~,es are identical up to the instant when the wave reflected from the interface of the layers 
arrives. The amplitude and period of the oscillations of the punch after removal of the load decreases as 
increases. 

The calculations were carried out for viscoelastic media. In this case co ffi ipe -~, where ~i:s the viscosity parameter 
of the medium, 0 <~ 21~ <~ 1 (the elasticity constants are complex quantities of the form coe~). The numerical inverse 
Laplace transformation is carried out along the real axis. We took m = 1 and ~ = 0.2 in the calculations. 
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