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The method of constructing the influence function for a multilayer isotropic medium (Green’s matrix-symbol) described in [1]
is extended to the case when the layers have electroelastic or anisotropic properties. A solution is obtained for piezoelectric crystals
of class 6rmum of the hexagonal system (polarized along the z axis of the piezoelectric ceramics). The proposed approach is also
applied to other problems of electroelasticity. When the piezoelectric and dielectric constants are equal to zero, Green’s matrix-
symbol is obtained for a transversely isotropic laminated medium. The dynamic contact problem is investigated and a numerical
analysis of the effect of the anisotropic properties of the layers on the behaviour of a massive punch in the case of unsteady
loading is carried out.

1. HARMONIC OSCILLATIONS OF AN ELECTROELASTIC LAYER

Suppose an electroelastic layer occupies the region |z | < h, —= < x,y < . We will consider as the
electroelastic material piezoelectric crystals polarized in the direction of the z axis). The mechanical
loads te™, re™™ and the electric-charge distribution density on the surface (the normal components
of the electric induction or electric displacement) d;"* and d,¢", respectively, are specified on the upper
and lower boundaries of the layer.

Harmonic electroelastic oscillations of the layer are described by the following equations in the
quasistatic approximation [2] (in dimensionless amplitudes of the parameters, the factor £ common
for all the characteristics will be omitted everywhere)

90+ Au+Q%u=0, 3,0+A0+Q%0=0
9:18° + A% (w+e, )+ Q%w=0 (1.1)
9,08+ A (e,w~g,¥)=0
Here
0=0,f +d(aw+egy), A=a,A?+02
8% =0, f+3,(Sgw+eyy), A®=3?+32

9'=e°f+a3(e3w—£3\v), f=a|u+az'0, a, =0y -0,

4 (47 _i3 _txn _ 0 FBo
Og=—-, B0=—‘ Yo=—"» 80———, al'z = 2
Cas Caa Cu Cas
[4 ql C'”l C:nl
a3 =l+'Yo, e,=——-" y €y =———, e3=—"—
Ca Cy Cu

g, l? enl? w?a®
€o=el+ez. €|=‘_""‘“ N 83=—33 ’ 02=£_—
Caq Cas Caa
The symbols d; (i = 1, 2, 3) denote differentiation with respect to xfy, y/a and z/a, respectively, and
X, ¥, z is a Cartesian system of coordinates. The components of the vector function w(x, y, z) = {u, v,
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626 I. I. Vorovich et al.

w, y} are the horizontal and vertical displacements of points of the medium u, v, w and the electric-
field potential y;  is the angular frequency of the oscillations, p is the density of the material, a is a
characteristic linear dimension (for example, the half-width of the electrode),  is a normalizing factor
which has the dimensions of electric field E, and Cip c,f, e;;, €; are the dimensional elastic, piezoelectric
and dielectric constants, respectively.

We will split the problem into two: symmetric and skew-symmetric.

The boundary conditions of the symmetric problem have the form

z=th: dwu+d(w+ey)=1(t,—1r)/2 (1.2)
9 0+d,(w+eyW)=1(t, —n)/2
Yof +9:(§gw+e3W)=(t;+ 1)/ 2
erf +0x(ew—e3y) =(d, +d,)/2

where t = {t;, t,, t3, di}, r = {ry, ), 13, d3}, 11, 3; 1, ; are the horizontal components, and #; and r; are
the vertical components of the vectors of the mechanical load, and 4, ; are the normal components of
the vectors of the electric induction, which acts on the upper and lower faces of the layer, respectively.
The boundary conditions of the skew-symmetric problem differ from (1.2) in the fact that +(t; 5 -
n, 2) is replaced by tl, 2+ r,a and t3+nr; by i(t3 - 73) while d1+d2 is replaced by i(dl - dz).
We will seek the solution of system (1.1} in the form

u=0,fi+9,f, vV=0,£-0\f, w=w, Y=y (1.3)

After substituting (1.3) into (1.1) we obtain after reduction in Fourier transforms with respect tox and y

(-Nag+33 +Q2)A- 229, (0, W+, ¥) =0

03034 +33 (B W +e,¥) - A2 (W +,¥)+ Q2W =0 (14)
€003A+03(esW —€,¥) -\ (e, W —g,¥) =0

(Mo, +93+Q%)B=0 (M =a?+B?, A=-Af, B=-Af,)

where o and B are the parameters of the Fourier transform.
From the last equation of (1.4) we obtain

K -0\ +Q2 =0, k=(a-Q%)% =10,

We will set up the characteristic equation of system (1.4) in the form
kS +1ok® + gk 1y =0
Wi =—€:80—e, Wy =Q (R -€;)+%¢
Wy = —€,0% +A2Q7% (€5 + €5 + s + X6 )+ A,
By =02, —Q2AY (3, +£,00) + 200X, (1.5)
€ = €3+ o)) — 03z + A5 —Ogly
€3 =034 €3 —€f —CloEy —CoXs — €
X1 =eBo—03e3, X, =ege3 +0s€s
X3 =€ =036, Xz =€p€; +0,E,
Xs=€8+2eie3, Yo =€ +€), Xg=€ +ef

As an analysis shows [2], this bicubic equation in the parameter k for known piezoelectric ceramics
has two real roots k; = +o, and four complex-conjugate roots +(k; + ik3) = o, 3.
For the symmetric problem the solution can be represented in the form
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3 3 3
A=Y pW.cho;z, W=3 Wsho;z, Y=3 sWsho;z (1.6)
i=l i=1 i=}
B= bCh04Z
5i =007 +Q%ey W)/ (LN -%,07) (1.7)

pi= 7»20';((13 +eos,')/(cl-2 -0.01.2 +Q2)
while for the skew-symmetric problem it can be represented in a similar form with the replacement

sh(-)ech(-).
The boundary conditions of the symmetric problem (1.2) can be converted to the form
z=1h: RA-N(w+ey)=FAIQ! /2
e2A+as(e3w-€3W)=Q; 12
9;B=FA2Q;5 /2
For the skew-symmetric problem the quantities +Q71, Q3 are replaced by —Q7, —Q3, while 03 07

are replaced by 105, (07, respectively.
Here

OF =ik 2[(T; ¥ R Yo+ (T, ¥ R, )P]
QF =ik*[(T, ¥ R)B+(T, FRy)ol)
Q31=7:%1R3’ Qf=D|iD2

where T;, R; and D; are the Fourier transforms of ¢;, r; and d;, respectively.
From the last boundary condition of (1.8) we find b, and hence

B=-)cho,z(26,sho,h) ' QF

The remaining boundary conditions of (1.8) give a system for determining the unknown coefficients
W;

LW=F, F=%(-AQ', 0. 0])
The elements of the matrix L = Il L i (i,j = 1, 2, 3) are as follows:
Lj=l;shoh, L;=l,choh, i=2,3
L =—?\,2(l+e,sj)+0,-pj
hj =08 +e35))+7op; (1.9)
l3j =0;(e3-€35;)+eyp;

Taking into account the fact that A’U = ia4 + ipB and A’V = iBA + iouB, the solution of the symmetric
problem (1.6) can be written in the form

W(2)=A5(2)Q", Q*=(Q. ¢f. Of, Q}}), W={U.V.W.¥)
We can similarly construct a solution of the skew-symmetric problem
W(z2)= A, (2)Q"

The matrices 4%(z)Q have the following structure
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—ioM2ME  —iBANE ioME oM}
—-iBA M +iadINE  iBME iBME
—-A2KE 0 ki k%
-A2RE 0 R; R}

Af(2)=

1 3 : | 1 3
+ . + -
K= aa i@ RS Fsimati O M= Bpimie )

3
N* =cho,z(26,A*sho,h)~!, A =;l,jm,jtj

My =lpla ~bylys, myy =lybyy=b)ly, my3=bh)ly, =bply
myy =lyhaty =lylysty, My =l —halyty

myy =halyty ~lplsaty, myy =lalsty =it

myy =hsbyts =l bty My =hylnty —llyt,

51(2)= sho;z (D)= cho;z ¢ =the A
! o;h’ cho;n’ /

The elements A™, K;, R;, M7, N~ are obtained by making the replacement sh ¢> ch and A*, K, R}, M?,
N*, respectively.
The general solution of the problem is
W(@)=A(Q" +A,(2)Q”

We will introduce two matrices of special form

tiok? X2 0 0
ct={ £PA? TFiak? 0 0
0 0 1 0
0 0 01

Then Q* = C*T + CR, and the solution for the layer can be written as

W(2)=B,(2)T+B_(z)R (1.10)

B,(2)=(A;(2)£A;(2))Ct=

o’m +B%n*  of(mi-nt) tiom: timd
_l oB(mf =n*y Bimi+alnt tifm;  +iPmi
—iokit —iPkiE k¥ +kf

+

(1.11)
-ian® -iprt trf trt

mi=M; M}, n*=N"tN*, kf=K; K}, r =R"+R}

2. CONSTRUCTION OF GREEN’S MATRIX-SYMBOL FOR
A MULTILAYER MEDIUM

Suppose the medium is a packet of N rigidly connected layers of thickness H = 2(hy + . .. + hy)
with rigidly clamped lower surface, and suppose the medium occupies the region —H < z < 0, — < x,
y < . We will use the solution (1.10), (1.11) obtained above for the layer. We introduce a local system
of coordinates for each layer

2 =Z+2(h| +"'+hk-—| )+hk’ k= 1.2,....N

We make a formal separation of the layers. Then the displacement of points of the kth layer, U, V



Dynamic problems for laminated electroelastic and anisotropic media 629

and W, and the electric potential ¥ will be given in dimensional parameters by the expression

W, (2,)=[B, (z,)Ti +B_(z,)T Ja/ cly, k=12,..,N
W, ={UV,WV¥Y/l}, T, ={(T,T,,T;,Dl}
where T}, is a vector whose components are the forces and electric induction characterizing the interaction
between the layers, and Ty is a vector specified on the surface of the medium.
Note that to calculate the elements of the matrix B..(z;) in (1.10) and (1.11) one must use the elastic,
piezoelectric and dielectric moduli of the corresponding layer.
We will write the matching conditions between the layers.
Wk(—hk)=wk+l(hk+|), k=l,2,...,N_l (2.1)
and the condition at the lower surface of the packet of layers
WN (—hN ) =0 (2.2)

From (2.1) we have the recurrence relation

B, ()T, +[B_(-h )~ g B, ()T, =

=g,B_ ()T, 8 =/ cls’ (23)
From (2.2) we determine
Ty =-BZ'(~hy)B, (~hy) Ty, (2.4)

Using (2.3) and (22.4) we can express T} in terms of the surface load T
T, = ()T F B, (-h)Ty, k=1,2,..,N
Fy=B_(-hy), F,=B_(-h)—g;B,(h, )+
+g,B_(h . )F) B (=h ), k=12,...,N-1

As a result, the displacements of the points of the multilayer medium and the electric potential will
be determined in dimensionless form by the expression

W(z2)=K(o.B.z,0)T, (2.5)
K(0,8,z,0)=(-D*" (B, (z,)-B_(z, )F;'B, (k) x
X1 BB (—h)/ 80, &) =cky/chs k=12,...N (2.6)

It has been established that as A — o, the asymptotic behaviour of the matrix X on thé surface of
the medium when z = 0 is identical with the similar behaviour of X for the layer. We have K(o,, B, 0,
®) ~ B, (k) and

my <M ML, myy ~NIMYs, Rt ~ARD, iy ~IMTTRD,
Kt ~N2KY, K3y ~INT' KD, nt - o2

o__1 ¢ o__13 o_ 13
K’- _FI%K”' R,‘ —'E)‘Iglblxu, M" =Flz‘=|a]'cu

2
M — (0 +eph;
<X X a.=“f(,-‘ 0P 0 = der?

b T, 4
X4 = X2M; n; -

]

x; are the cofactors of the elements of the matrix L= Gill G,j =1,2,3), where
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Cij=nja; —1-eb;, Lo =m;(Bg+esb;)+Yoa;
Cyj=e3—€3b; + €a;
and v; are the roots of the cubic equation
Wkt + ok + ek +agy; =0

The solution for a multilayer medium rigidly clamped to an elastic half-space is obtained by letting
the thickness of the lower layer tend to infinity. By changing the system of coordinates to the form
z* = zy — hy in the lower layer and passing to the limit we obtain the matrix

Fy=0, Fy_, =B_(-hy_)—gy-B7(0)
F, =B_(~h )~ g,B. (h, )+ 8B_(h )FB, (ke ), k=12, ,N-2

z=zk-—2i§|h,-+hk, k=1,2,...N-1I; z=z'—2i§—ihi, k=N

The matrix BZ(z*) = 0, BI(z*) = 2A%(z*)C* has the elements

K - Zm,, exp(6)z), rt = —!: 25 iy exp(6] 2)

A” i3
m; = 1'2 Zp]’"![ eXp(O' 2), n _W’ A” =detLl
where m;; are the oofactors of the elements of the matrix L™ = ||| (¢, j = 1, 2, 3), I, pj, 5}, given

by (1.9) and (1.7), and o; Nare the roots of the characteristic equatlon (1.5) for the half-space.
In particular, for the half-space we have the simple formula

W(z)=B (T,
For a layer rigidly clamped to the half-space we obtain the displacement in the layer
W(2)= (B, (z+h)=B_(z+h)F'B, (=hy)t,
in the half-space
W(2)=-B(z+2h)F "B, (=h)ty / g2, F, =B_(~h)-g,BT(0)

Applying an inverse Fourier transformation to (2.5) we obtain the integral representation of the
solution for a multilayer medium

0
w(x,y,2) = ___1;_! jW(?)e"'(“‘+B‘ )dozdﬁ (2'7)

3. THE MIXED DYNAMIC PROBLEM

Suppose we are given mixed boundary conditions on the surface of the medium z = 0. In the region
S we are given the displacements and the electric potential

w(x,y,0,0)=u’(x,y,0), (x.y)eS
Outside the region § the stresses are zero and there is no normal component of the electric induction
t°=0, (x,y)eS

Then, from (2.7) we obtain a system of fourth-order integral equations
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I! k(x—&,y-§,0)t°(E,5,0)dEd; =u’(x,y,0) (CRY

k(x,y,0)= ——;I [K(0.,B.0,0)e™***doidB

G} 02

in the unknown vectors t°{t,, t,, 5, d}. The contours of integration o, and o, are chosen in accordance
with the principle of limiting absorptlon [3].

Problems of this kind on the excitation and oscillations by an electrode in an electroelastic layer with
a rigidly clamped lower surface were considered in [4, 5]. Here a single electrode, as the simplest
electroelastic wave transducer was modelled by a strip punch. Formulae were obtained which enable
the contact pressures and the electric induction to be found over the whole region of contact of the
electrode with the medium, including the boundary, and also the elastic and electric characteristics
outside this region. The relations obtained remain true for an electroelastic multilayer medium; only
the form of the integrand matrix function of the kernel of the system of integral equations which
participate in the solutions constructed is changed. In this case the matrix function K is given by (2.6).

4. CONSTRUCTION OF GREEN’S MATRIX FUNCTION FOR
A TRANSVERSELY ISOTROPIC LAMINATED MEDIUM

The method of constructing the matrix K considered in Section 2 can be extended to multilayer
anisotropic media. As an example we will consider a transversely isotropic medium, the equations of
which can be obtained by setting the piezoelectric and dielectric constants equal to zero in (1.1) and
(1.2). In this case the three-dimensional load vector t 0{t,, t,, 13} is specified on the surface of the medium
and the displacements of the points of the laminated medium w{x, v, w} are given by (2.5)2.7). The
matrix K is a 3 x 3 matrix and is obtained by deleting the fourth row and column from (1.11). After
simplification the governing functions have the form

L (2)=hey(2) M= bityc4(2)=bytyc(2)

M=

22%a0 T T 2A2A°
hG .2
Nt =t 2=, -2
2%.204 sh G4h 4 ! (4'1)

K= Las, (z)-.i,azsz(z)’ K a5 2) fza,tzs,(z)
24 24
A* =bbt, -bylity, a;=0,0,(A -Q -8y67)”!
[ =vo+80a,0;, b=0,-Aa;, i=12
where o; are the roots of the biquadratic equation

Sok* —[A2(14+ 850y —a3) -0 (8 + DIk +(A? —Q¥ ) aph? -0Q2)=0 &, =%0), (4.2)

In the special case of an isotropic medium we have

A+2 A v
0y =8y = l‘__ l 2V Bo= °=E=21—2V
A+p 1
=1, =0l = F o
o | Oy ) " 1-2v

where A, u are the Lamé constants and v is Poisson’s ratio.

5. THE UNSTEADY CONTACT PROBLEM

We will consider the dynamic contact problem of the interaction between a punch of mass m with
a transversely isotropic laminated medium occupying the region — < x,y < oo, -H <2z < 0. We
will assume that the punch has a flat base S and that the centre of mass of the punch coincides with
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the origin of coordinates. A load which varies with time ¢ in a specified way acts on the punch. The
load, reduced to the centre of mass, is split into a force component P(f) = {P, P, P;} and a moment
M(z) = {M;, M,, M;}. The system is at rest at the initial instant of time. The displacements of the
points of the punch u’() = {8, u3, ul)} are defined in the formu’ = w + ¢ x ror

0 0_ 0_
W =Uy =@y, Uy =y +QyX, Uy =uy +Qy—@yx

where u;, u; and u3 are the horizontal and vertical components of the displacement of the centre of
mass of the punch and ¢ is the vector of the angles of rotation about the centre of mass of the punch.
The equations of motion of the punch in Laplace transforms take the form

3 6
mPZ“i =-F+ Z.IQ-'*“k + E‘Qik%-s (5.1)
2 2 k S ok s
Jip°9;=-M,; +E.'Ri Uy +k§‘ R i=12,3

System (5.1) contains six unknown functions u;, @; (i = 1, 2, 3) which also define the motion of the
punch of mass mn; J; are the moments of inertia about the x, y and z axes. The corresponding forces and
moments which occur in the region of contact between the body and the medium will be defined by
the formulae

R =IJ aiyds, R =—ISI g3 xdS

Ry = [[(¢3x-qi»)dS, QF =[[q4/dS, k=123
s S

The vector functions ¢* {g%, g% g%} (k = 1,2, ..., 6) are the solutions of the system of integral
equations (3.1) for the right-hand side, when only one of the components uy, U, u3, @1, ¢2, 3, is non-
zero, in this case having unit value. In the unsteady problem we must replace the oscillation frequency
o by ip.

For a strip-shaped punch of width 24, Eqgs (5.1) simplify and the displacements of the punch in Laplace
transforms will be given by the expressions

u =[RUP* + R )~ MO8, uy = By(mp? +03)”!
@ =[M(mp® +Q})~ RO} 147 (5-2)
Ay =(mp® +0) W Jp? + R} )-(Q})?

R3=_Iaq§(x)xdx. Qf = [qf(x)dx, k=1,2,3; i=12

where p is the Laplace transform parameter, q* {q%, g%} are the solutions of the corresponding dynamic
contact problems
1_|l1 2 _J0 a_Jo
o' =l ke <[} o'
and R*(p), Q¥(p) are constructed by the fictional absorption method in analytic form, which simplifies
the inverse Laplace transformation of (5.2) [1, 6]. Here the numerical Laplace inversion is carried out
using Filon’s method which, in the problems considered, enables high calculation accuracy to be obtained.
Problems of the action of an unsteady load on a strip-shaped punch in contact with isotropic multilayer
bases were investigated in detail in [1, 6]. The effect of the anisotropic properties of the layers on the
displacement of the punch and the nature of the unsteady process in the medium can be investigated
using the solutions constructed in [1, 6]. The governing functions M, N*, K7, A* for the matrix X must

be taken in the form (4.1), and one must take into account the different behaviour of the matrices K
at infinity for isotropic and anisotropic media.
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Figure 1 shows the vertical displacements of a punch in contact without friction with a transversely isotropic
layer of thickness H = 0.5, rigidly clamped to an undeformable base. A vertical load P(f) = H(t — 0.3) acts on the
punch. Curve 1 illustrates the isotropic layer with parameters oy = 8 = 3.5, ¥ = 1.5, which correspondsto v =
0.3. Curves 2 and 3 correspond to a transversely isotropic medium with 8y = 2.0 and 5.0 (g = 3.5, o = 1.5). It
was established that a change in the parameters o and y has no effect on the amplitude and period of the oscillations
of the punch and is due to the form of the functionals (5.3), defined when A = 0 taking expressions (4.1) and (4.2),
which participate in the solution, into account.

Figure 2 illustrates the displacements of a punch which interacts with a two-layer medium. The upper layer
is an isotropic medium of thickness 2i; = 0.4 and the lower layer is a transversely isotropic medium of thickness
2h, = 04. In this case the anisotropy in the lower layer is introduced by changing the parameter 8 = eoy.
A vertical load P(f) = H(¢ - 0.1) acts on the punch. Curve 1 illustrates the problem for an isotropic layer of
thickness H = 2h; + 2h; = 0.8 (09 = 8 = 3.5, v = 1.5). Curves 2 and 3 correspond to € = 0.5 and 1.5 in the
lower layer. The curves are identical up to the instant when the wave reflected from the interface of the layers
arrives. The amplitude and period of the oscillations of the punch after removal of the load decreases as &
increases.

The calculations were carried out for viscoelastic media. In this case o = ipe'c, where g'ls the viscosity parameter
of the medium, 0 < 2, =< 1 (the elasticity constants are complex quantities of the form c e C). The numerical inverse
Laplace transformation is carried out along the real axis. We took m = 1 and { = 0.2 in the calculations.

wx1g?

JIVAY

Fig. 1.

wxzg?

Fig. 2.
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